Calculation of the angles of deflection
The angles of deflection are calculated in follow steps (sections of distances):
1. From the nearest point of the star-light to the sun (W=0) up to angle γmax =89,993° (W about 85 km)
2. From 89,993° up to 2°(W=1,9917*1010 m)
3. From 1,9917*1010 m up to 1AU (AU=Astronomic Unit= distance sun-earth=1,496*1011m)
4. From 1AU up to star (W to infinite)
1. Section of distance:
The calculations from W≈0 (γmax ≈90°) up to γmax =89,993° (W about 85 km) are contained in the follow table A3.
Here are columns small make, to present the complete table. To can duplicate the calculations follow up the calculation-instructions of the columns.
The calculations in the table connect with follow formula:
The start-equation is as above to see
A-1
Also above was given
C= A-7
and
A-9 with A-14
A-13
To here are not contain simplifications in the formulas. For integration but make now the second simplification for in sections integration with constant in the area of integration from W1 to W2. With that follow the start-equation
A-36
With these equation is calculable the deflection-angle for the way from W1 to W2 , where is take constant. That is the case in table A3 in each case for one group of 10 lines, for example from 12,139 km (89,9990°) up to 23,064 km (89,9981°) (yellow marked as limit). Follow 7 such groups. Summation over all groups for the angle-area from 89,9999°(W=1,2137 km) up to 89,9930° (W about 85 km) give the deflection-angle β1 for the first above defined distance-section. That not begin at W=0 km, but about one km from the sun-nearest point of the star-light, can bear at the dimension of the sun.
A-37
Here is Wi the section of way for the group i (for example 12,139 km (89,9990°) up to 23,064 km (89,9981°)) and Wi for the belonging to the middle length of way.
Because the factor before the sum is a constant, was calculated in table A3 only the sum . (It is 1,5130m; see the end of table.)
Now to the calculation of Wi :
The equation above A-9 with A-14
must divided for the area of angle from (0° up to 89,993°) and the over that going parts.
A-38
From
A-39
follow by transformation
A-40
and set in A-38:
A-41
For the next group of angles is the equation corresponding
A-42
The second term of sum in these equations is calculated in column M of the table (here SubdeltabL).
The complete equation is calculated in column N (here Lquer).
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
Grad |
Bogen |
W |
Delta-W |
Delta-Gamma |
R |
r (0,1m) |
L Satz |
b |
delta b |
Konstante |
bdeltabL |
SubdeltabL |
Lquer |
Lquerarctan |
8,99999E+01 |
## |
1,2137E+03 |
## |
# |
## |
3,6102E+04 |
# |
## |
Lquer89993 |
# |
||||
8,99998E+01 |
## |
2,4276E+03 |
## |
## |
# |
## |
3,4947E+04 |
# |
## |
### |
# |
|||
8,99997E+01 |
## |
3,6415E+03 |
## |
## |
# |
## |
3,3832E+04 |
# |
## |
# |
||||
8,99996E+01 |
## |
4,8554E+03 |
## |
## |
# |
## |
3,2755E+04 |
# |
## |
# |
||||
8,99995E+01 |
## |
6,0692E+03 |
## |
## |
# |
## |
3,1717E+04 |
# |
## |
# |
### |
2,4779E+04 |
3,8922E-01 |
|
8,99994E+01 |
## |
7,2831E+03 |
## |
## |
# |
## |
3,0717E+04 |
# |
## |
# |
||||
8,99993E+01 |
## |
8,4970E+03 |
## |
## |
# |
## |
2,9755E+04 |
# |
## |
# |
||||
8,99992E+01 |
## |
9,7109E+03 |
## |
## |
# |
## |
2,8829E+04 |
# |
## |
# |
||||
8,99991E+01 |
## |
1,0925E+04 |
## |
## |
# |
## |
2,7938E+04 |
# |
## |
# |
||||
8,99990E+01 |
## |
1,2139E+04 |
## |
## |
# |
## |
2,7083E+04 |
# |
## |
# |
||||
8,99989E+01 |
## |
1,3352E+04 |
## |
## |
# |
## |
2,6262E+04 |
# |
## |
# |
||||
8,99988E+01 |
## |
1,4566E+04 |
## |
## |
# |
## |
2,5473E+04 |
# |
## |
# |
||||
8,99987E+01 |
## |
1,5780E+04 |
## |
## |
# |
## |
2,4717E+04 |
# |
## |
# |
||||
8,99986E+01 |
## |
1,6994E+04 |
## |
## |
# |
## |
2,3991E+04 |
# |
## |
# |
||||
8,99985E+01 |
## |
1,8208E+04 |
## |
## |
# |
## |
2,3295E+04 |
# |
## |
# |
### |
1,8522E+04 |
3,2326E-01 |
|
8,99984E+01 |
## |
1,9422E+04 |
## |
## |
# |
## |
2,2628E+04 |
# |
## |
# |
||||
8,99983E+01 |
## |
2,0636E+04 |
## |
## |
# |
## |
2,1989E+04 |
# |
## |
# |
||||
8,99982E+01 |
## |
2,1850E+04 |
## |
## |
# |
## |
2,1375E+04 |
# |
## |
# |
||||
8,99981E+01 |
## |
2,3064E+04 |
## |
## |
# |
## |
2,0788E+04 |
# |
## |
# |
||||
8,99980E+01 |
## |
2,4277E+04 |
## |
## |
# |
## |
2,0224E+04 |
# |
## |
# |
||||
8,99979E+01 |
## |
2,5491E+04 |
## |
## |
# |
## |
1,9684E+04 |
# |
## |
# |
||||
8,99978E+01 |
## |
2,6705E+04 |
## |
## |
# |
## |
1,9166E+04 |
# |
## |
# |
||||
8,99977E+01 |
## |
2,7919E+04 |
## |
## |
# |
## |
1,8669E+04 |
# |
## |
# |
||||
8,99976E+01 |
## |
2,9133E+04 |
## |
## |
# |
## |
1,8193E+04 |
# |
## |
# |
||||
8,99975E+01 |
## |
3,0347E+04 |
## |
## |
# |
## |
1,7736E+04 |
# |
## |
# |
### |
1,3759E+04 |
2,4013E-01 |
|
8,99974E+01 |
## |
3,1561E+04 |
## |
## |
# |
## |
1,7297E+04 |
# |
## |
# |
||||
8,99973E+01 |
## |
3,2775E+04 |
## |
## |
# |
## |
1,6876E+04 |
# |
## |
# |
||||
8,99972E+01 |
## |
3,3988E+04 |
## |
## |
# |
## |
1,6472E+04 |
# |
## |
# |
||||
8,99971E+01 |
## |
3,5202E+04 |
## |
## |
# |
## |
1,6083E+04 |
# |
## |
# |
||||
8,99970E+01 |
## |
3,6416E+04 |
## |
## |
# |
## |
1,5710E+04 |
# |
## |
# |
||||
8,99969E+01 |
## |
3,7630E+04 |
## |
## |
# |
## |
1,5351E+04 |
# |
## |
# |
||||
8,99968E+01 |
## |
3,8844E+04 |
## |
## |
# |
## |
1,5006E+04 |
# |
## |
# |
||||
8,99967E+01 |
## |
4,0058E+04 |
## |
## |
# |
## |
1,4675E+04 |
# |
## |
# |
||||
8,99966E+01 |
## |
4,1272E+04 |
## |
## |
# |
## |
1,4355E+04 |
# |
## |
# |
||||
8,99965E+01 |
## |
4,2486E+04 |
## |
## |
# |
## |
1,4048E+04 |
# |
## |
# |
### |
1,0626E+04 |
1,8546E-01 |
|
8,99964E+01 |
## |
4,3699E+04 |
## |
## |
# |
## |
1,3752E+04 |
# |
## |
# |
||||
8,99963E+01 |
## |
4,4913E+04 |
## |
## |
# |
## |
1,3467E+04 |
# |
## |
# |
||||
8,99962E+01 |
## |
4,6127E+04 |
## |
## |
# |
## |
1,3192E+04 |
# |
## |
# |
||||
8,99961E+01 |
## |
4,7341E+04 |
## |
## |
# |
## |
1,2926E+04 |
# |
## |
# |
||||
8,99960E+01 |
## |
4,8555E+04 |
## |
## |
# |
## |
1,2671E+04 |
# |
## |
# |
||||
8,99959E+01 |
## |
4,9769E+04 |
## |
## |
# |
## |
1,2424E+04 |
# |
## |
# |
||||
8,99958E+01 |
## |
5,0983E+04 |
## |
## |
# |
## |
1,2186E+04 |
# |
## |
# |
||||
8,99957E+01 |
## |
5,2197E+04 |
## |
## |
# |
## |
1,1955E+04 |
# |
## |
# |
||||
8,99956E+01 |
## |
5,3410E+04 |
## |
## |
# |
## |
1,1733E+04 |
# |
## |
# |
||||
8,99955E+01 |
## |
5,4624E+04 |
## |
## |
# |
## |
1,1518E+04 |
# |
## |
# |
### |
8,5148E+03 |
1,4861E-01 |
|
8,99954E+01 |
## |
5,5838E+04 |
## |
## |
# |
## |
1,1310E+04 |
# |
## |
# |
||||
8,99953E+01 |
## |
5,7052E+04 |
## |
## |
# |
## |
1,1109E+04 |
# |
## |
# |
||||
8,99952E+01 |
## |
5,8266E+04 |
## |
## |
# |
## |
1,0914E+04 |
# |
## |
# |
||||
8,99951E+01 |
## |
5,9480E+04 |
## |
## |
# |
## |
1,0726E+04 |
# |
## |
# |
||||
8,99950E+01 |
## |
6,0694E+04 |
## |
## |
# |
## |
1,0543E+04 |
# |
## |
# |
||||
8,99949E+01 |
## |
6,1908E+04 |
## |
## |
# |
## |
1,0367E+04 |
# |
## |
# |
||||
8,99948E+01 |
## |
6,3121E+04 |
## |
## |
# |
## |
1,0195E+04 |
# |
## |
# |
||||
8,99947E+01 |
## |
6,4335E+04 |
## |
## |
# |
## |
1,0029E+04 |
# |
## |
# |
||||
8,99946E+01 |
## |
6,5549E+04 |
## |
## |
# |
## |
9,8676E+03 |
# |
## |
# |
||||
8,99945E+01 |
## |
6,6763E+04 |
## |
## |
# |
## |
9,7112E+03 |
# |
## |
# |
### |
7,0304E+03 |
1,2270E-01 |
|
8,99944E+01 |
## |
6,7977E+04 |
## |
## |
# |
## |
9,5593E+03 |
# |
## |
# |
||||
8,99943E+01 |
## |
6,9191E+04 |
## |
## |
# |
## |
9,4118E+03 |
# |
## |
# |
||||
8,99942E+01 |
## |
7,0405E+04 |
## |
## |
# |
## |
9,2685E+03 |
# |
## |
# |
||||
8,99941E+01 |
## |
7,1619E+04 |
## |
## |
# |
## |
9,1293E+03 |
# |
## |
# |
||||
8,99940E+01 |
## |
7,2832E+04 |
## |
## |
# |
## |
8,9940E+03 |
# |
## |
# |
||||
8,99939E+01 |
## |
7,4046E+04 |
## |
## |
# |
## |
8,8624E+03 |
# |
## |
# |
||||
8,99938E+01 |
## |
7,5260E+04 |
## |
## |
# |
## |
8,7344E+03 |
# |
## |
# |
||||
8,99937E+01 |
## |
7,6474E+04 |
## |
## |
# |
## |
8,6099E+03 |
# |
## |
# |
### |
5,9392E+03 |
1,0366E-01 |
|
8,99936E+01 |
## |
7,7688E+04 |
## |
## |
# |
## |
8,4887E+03 |
# |
## |
# |
||||
8,99935E+01 |
## |
7,8902E+04 |
## |
## |
# |
## |
8,3707E+03 |
# |
## |
# |
||||
8,99934E+01 |
## |
8,0116E+04 |
## |
## |
# |
## |
8,2558E+03 |
# |
## |
# |
||||
8,99933E+01 |
## |
8,1330E+04 |
## |
## |
# |
## |
8,1439E+03 |
# |
## |
# |
||||
8,99932E+01 |
## |
8,2543E+04 |
## |
## |
# |
## |
8,0348E+03 |
# |
## |
# |
||||
8,99931E+01 |
## |
8,3757E+04 |
## |
## |
# |
## |
7,9285E+03 |
# |
## |
# |
||||
8,99930E+01 |
## |
8,4971E+04 |
## |
# |
## |
7,8248E+03 |
# |
|||||||
1,5130E+00 |
Tab. A3: The calculation from W=1214m up to W=84971m ( The yellow marked cells make plain the limits of groups.)
Instructions for calculations oft he columns in the table above:
A: Entry-angle of the sun-rays in the 1m-layer (angle measured from radial-ray), begin at 89,9930°, sequence of stages in (1/10 000)°-steps; end at 89,9999°. The angle A can act as γmax too.
B: Conversion to arc: B=(A/180)*π
C: Length of way W, calculated from radius of the sun and γmax :
C=695500000/TAN(3,141592654*A/180) The angle A is here used as γmax (see fig. A2 too).
D: Difference of the length of way W between two numbers of angles, is at these table but not used.
E: A fifth of the difference of angle, is at these table but not used.
F: Radius of the sun as a constant: F=6,955*108
G: Distance r of the layer from center-point of the sun: G= WURZEL(C2+F2)
H: length of course L of the particles in the layer by the equation above . Here is to take for r the number belonging to γmax , see fig. A3 too. An example: For the range of angles from 89,9981° up to 89,9990° shall calculated . To that is divided the range of angles in 10 sections (Line 11 to 20): from 89,9981° over 89,9982° to just 89,9990° (γmax). For each angle is calculated Lγ by the equation above, where is used for r the number belonging to 89,9990°.
H=WURZEL(($G$11)2*cos2(B)+2*$G$11+1)-$G$11*cos(B)
(Note: WURZEL correspond to square rote)
I: Calculation of b in accordance to fig. A5: I=sin(B)*H
J: Calculation of the difference ∆b in accordance to fig. A4: J=Ii-Ii+1
K: A constant: The middle course for the range from 0° up to 89,993° as part of the sum . It is take from tab. A4, column S (Lquer), line 1. K=5103,6
L: The product b*∆b*L: Column L=I*J*H
M: The sum b*∆b*L: M=2/(I11)2*SUMME(L11:L20) for example for the section line 11 to 20.
N: The middle length of course in accordance to
N=N(of the group of angles before)*(bmax group before/bmax )2+M
O: Calculation of each term of sum of the equation:
O=N*(arctan(W2/R)-arctan(W1/R)) with W1and W2 for the respective group of angles
The sum of the numbers of the column O is the searched value of the term
for the first area of distance W=1,2137 km up to W≈85 km.
The result of table A3 is: 1,5130m.
To Chapter 2.5 Connection between the 3K-radiation and the deflection of light by the sun